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OPTIMAL LANE DEPTHS FOR SINGLE AND MULTIPLE PRODUCTS IN

BLOCK STACKING STORAGE-SYSTEMS.

Marc Goetschalckx
H. Donald Ratliff

Georgia Institute of Technology

2 Block Stacking is one of the most common storage methods for warehousing

large quantities of palletized or boxed products, when high space utilization is the

main concern. Efficient algorithms are currently only available to compute the

optimal lane depth for a m assuming that all lanes have Cgnualth .

In this paper, an algorithm is presented to compute the optimal number of

lanes and the optimal lane depths for a single product, when the lanes are allowed

to have different depths. It is shown that the optimal lane depths follow a triangular

pattern. The optimal lane depth pattern is compared experimentally with several

heuristic patterns. Several near-optimal and efficient heuristics are identified.

In most warehouses, the lane depth on each side of a single aisle is kept

constant for layout and material flow purposes. An optimal algorithm to assign a

single product to such a limited number of lane depths is also derived. Based upon

this algorithm, a procedure for determining the lane depths and the number of lanes

in a warehouse for storing multile produt is developed. If the warehouse is

perfectly balanced, then the procedure minimizes the required warehouse area.
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3 1. MnRODUcTION

£ Block stadki is one of the most common storage metbods for warehousing large quantities

of palletized or boxed products. With block stacking no supporting rack structures. are used, but the

3 items are stored on top of each other in stacks.. The stacks are placed one after the other in storage

lanes and the lane., are placed next to each otber perpendicular to the access aisle. Storage and

retrieal is done one itemn at a time, usuaDly %ith industrial trucks, e.g. fork lift trucks. A conceptual

representation of block stacking is shown in Figure 1.

Block stacking is often used for paper goods, household products and appliances and for

reserve storage areas, where large quantities per product are stored. In these cases, a higb space

utilization at low cost is of prime importance.

r Figue 1. Block Stacking IMustration
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Warehouse managers are faced with two important decisions with respect to block stacking.

First there is the warehouse design decision, which determines the overall layout and organization of

the warehouse. The warehouse layout is relatively constant over time and the design problem must

only be solved infrequently. In this paper, it will be assumed that all the items in the warehouse have

the same unit load dimensions. The stack height and lane depth can then be expressed in items, rather

ithan in distance units such as feet. The algorithms, which will be presented, can easily be adapted to

the case of items with different heights. Furthermore, it will be assumed that the height of the stacks

depends strictly on the product load restrictions and warehouse ceiling and is fixed in advance. The

stack height will be denoted by z (items). The layout decision thus involves the determination of the

depths of the lanes, denoted by x (stacks); the number of lanes of each depth, denoted by y (lanes); and-

the location of those lanes in the warehouse.

The warehouse manager must also determine the operational policies for managing the

warehouse, Le. the storage and retrieval olicies. Most of the time, the items are retrieved on a first in

5 first out (FIFO) basis to prevent item spoilage. The storage policy is the set of rules which determines

where each item of an incoming product must be stored. Operational policies can change very quickly

and are computed very frequently, thus they must be implemented in real time on the warehouse

computer.

Storage policies can be divided into shared and dedicated policies. With shared storage

policies it is assumed that the space vacated by an depleted lane is immediately reused by items of

another batch (of a different or the same product). With dedicated storage policies a number of lanes

is reserved for the units of a particular product. An example of a shared storage policy is random

storage and an example of a dedicated storage policy is dedicated storage based on product turnover.

It must be observed that if space were to be dedicated to products, then the space utilization would be

maximized by making the lanes as deep as possible. The rest of this research will focus on the more

space efficient shared storage policies.
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Two competing objectives are common in block stacking. On the one hand, the available floor

space should be used as effectively as possible, or equivalently, the required warehouse should be built

as small as possible. This objective tries to maximize the space utilization of the warehouse layout. On

the other hand, the cost for storing and retrieving items from the warehouse should be kept to a

minimum. The objective here is to minimize the material handling costs of the storage and retrieval

policies. In most cases these two bjectives conflict and tradeoffs must be made. For example, deep

lanes use the space in front of the lane more efficiently, but require greater care and time for storage

and retrieval operations. See Berry (1968) for a further discussion of this issue. This research is

3 primarily concerned with the space utilization objective, since it assumes that large quantities of each

product are stored.

For the space utilization objective, the main issue in block stacking systems is determining the

00 lane depth(s) for a product. The aisle space in front of a lane will be denoted by 'frontage". Deep

lanes require only a small percentage of frontage as compared to total lane space. However, once

5withdrawal has started from a deep lane, it takes a long time to release that frontage and the empty

space in the lane by completely emptying the lane. Short lanes exhibit just the opposite characteristics,

5in that they require a higher percentage of frontage but the time to release the frontage and the empty

lane space is less. Hence, the problem is to determine the lane depth which achieves the best tradeoff

between the amount of space it requires and the time this space is occupied.

The following assumptions are typical in a block stacking warehouse. Because of the physical

3characteristic of block stacking, the storage and retrieval within a lane is last in, first out (LIFO). The

retrieval policy for product batches is first in first out (FIFO) to prevent item spoilage. Products and

replenishment batches cannot be mixed in a single stack or in a single lane. After some of the stacks in

a lane are withdrawn, relocation of the remaining stacks to a shorter lane is not allowed. This

minimizes the number of times an item is handled and thus tends to reduce material damage. The

withdrawal rate for each product is assumed to be constant over time and the withdrawal quantity is

one pallet. Replenishment is assumed to be instantaneous, but a safety stock is allowed.

4



The following notation will be used throughout the paper. Let Q be the number of items or

unit loads to be stored of an arriving product batch. Let A be the aisle width, L the pallet length

perpendicular to the &,le and W the pallet width along the aisle, expressed in distance units such as

feet. Both length and width are measured pallet centroid to pallet centroid between adjacent stacks

and include all clearances. This corresponds to the 'effective length and width" defined by Marsh

i(1979). Let z be the stack height expressed in unit loads. The different lanes are indexed by n and the

lane depth(s) are expressed in stacks and are denoted by a vector x.. The geometrical definitions are

illustrated in Figure 2. Let d denote the constant demand rate for the units of this product. Let I be

the current on hand inventory in units of the product, this initial inventory is equivalent to a demand

lead time of I/d for the units that have to be stored.

In the next section, the literature on block stacking is reviewed. In Section 3, an algorithm for

determining the optimal lane depths (with respect to space utilization) for a single product is

introduced. This optimal algorithm is compared in Section 4 with several heuristic algorithms. In

5 Section 5, the case of multiple products is examined and the notion of a per balanced warehouse

is introduced. In Section 6, a sequential procedure for designing a warehouse layout and deriving

operational policies for block stacking is presented. Finally, the research results are summarized in

Section 7.
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3- 2. LITERATUREREIEW

3 Many authors have discussed the block stacking problem descriptively, e.g. Berry (1968) and

Marsh (1979). This review will focus on the literature in which mathematical models for the block

stacking problem are presented. One of the most complete treatments of the block stacking problem is

given in Matson and White (1984). The most current and extensive review of block stacking to date

can be found in Ashayeri and Gelders (1985) which contains many references but does not go into the

details of the different methods.

Kind (1965,1975) was the first one to propose a formula for the best unique lane depth for a

single product, with respect to the space utilization. Kind proposed the following formula for the single

lane depth

AA

Iz 2L

No derivation of this formula is given. This approximate formula was shown by Matson and White

(1981) to overestimate the lane depth, but with small relative error, compared to their method.

Kooy (1981) introduced the idea that an optimal warehouse system should always have an

6Vempty lane available of the depth required to store an arriving product optimally. This notion is

formalized later in this paper to the definition of a *perfectly balanced' warehousing system. Kooy

obtained the optimal (multiple) lane depths for a product by complete enumeration over all feasible

combinations of lane depths. The number of lanes of each depth required in the warehouse design was

3determined by running the same complete enumeration program for all the products. No details of the

mathematical formulation are given.

The most rigorous treatment to date of block stacking can be found in Matson and White

(1981, 1984). They used mostly the space utilization objective. The material handling objective was

6



only considered for a single aisle with lanes of equal depth. For the space utilization objective, they

showed that the objective function is non-convex and they derived the optimal unique lane depth for

one product by complete enumeration. They also concluded that the objective function, allowing only a

single lane depth, is relatively insensitive to small deviations from the optimal depth. They treated the

cases with or without safety stock and for different withdrawal patterns. They derived an continuous

approximation to the optimal single lane depth, which came very close to the optimal (discrete) result.

The formula for the optimal continuous single lane depth is

(421,A

Q2Lz

The term 'lot splitting' is used for the case where multiple lane depths are allowed per product

in Matson (1982). An optimal dynamic programming and a heuristic procedure for selecting multiple

lane depths out of a set of lane depths for a single product are given. The savings for using 2, 3 or 4

depths were 1.15%, 1.43% and 1.55% respectively, when compared to the optimal single lane depth. It

was concluded that multiple lane depths were rarely justified and then at most two different depths

were sufficient. No solution times or computational complexity for the dynamic programmini,

procedure or the heuristic are given.

3 For multiple products. Matson and 'hite identified the influence of the inventory pattern. of

the number of different lane depths and of the replenishment schedule on the space utilization and they

showed the combinatorial nature of the problem. Lot splitting per product was not allowed. They did

not give a solution procedure for this case.

It must be observed that the conclusions drawn by Matson and White are based on the

comparison of heuristic solutions to the single product block stacking problem. In the next section, an

optimal solution for the single product problem will be derived, which will allow the validation of the

above condusions. If multiple products have to be stored, then their unique lane depths might not

match and lot splitting must be used in order to obtain a feasible warehouse layout. This problem is

treated in Section 6.

5 7
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,
3. OPTIMAL MULTIPLE I.ANE DEPTHS FOR A SINGLE PRODUCT

bn this section an algorithm is presented which will find the optima] multiple lane depths for a

batch of a single product with respect to minimizing the total space over time the batch requires during

its stay in the warehouse. The lane depths and the number of lanes for each lane depth are determined

by the algorithm. It will be shown that the optima lane depths follow a triangular pattern, with a slope

equal to half the aisle width dihided by the pallet length.

RALT AISLE AISLE HA-11 AISLE

_7 1 11.1

ii _ _

_ _ II Ii Fil - tI

Figure 2. Block Stacking Ground Plan

It is assumed that products are stored back-to-back in the warehouse as illustrated in Figure 2.

One half of the frontage is allocated or 'charged' to that lane. Assuming that a depleted lane is

immediately reused by other units, the basic question is how much space and for how long a particular

batch requires. The objective is thus to minimize the total space required over time for the storage of

this batch. The dimensions of the objective are [L 2 T), e.g. square feet days. Since the total time the

C ,
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batch stays in the system is independent of its storage pattern, the above objective is equivalent to

minimizing the average required space for the batch.

Furthermore, it is assumed that the lanes are emptied by increasing index n, Le. the demand is

first withdrawn from lane 1, then from lane 2, etc... If the number of pallets Q is not an integer

multiple of the the stack height z, then it is assumed that the first stack in the first lane is not of full

height. Similarly, if there are not enough stacks to fill all lanes to their full depth, then it is assumed

that the first lane is incomplete.

The optimal algorithm is based on dynamic programming. The states in the dynamic

programming formulation correspond to the number of stacks, the stages correspond to the number of

lanes (which can be at most equal to the number of stacks). The computational complexity of the

algorithm is then equal to O(p2), where P is the number of stacks. An algorithm is said to be 0(N 2) if

N is a measure of the size of the problem instance and if the running time of the algorithm does not

grow faster than a quadratic function of N. A more rigorous definition of algorithm complexity is given

in Aho et al. (1983).

The algorithm was programmed in Pascal on a 8 Mhz IBM AT with 80287 numerical

coprocessor. The computation times ranged from less than 0.05 seconds for five stacks to 11.21

seconds for 160 stacks, with an average time of 1.57 seconds. In Section 4, a complete description of

the parameters of the experiment is given. These short computation times allow the implementation of

this optimal algorithm in real time on small warehouse computers.

In the remainder of this section. notation and formulas are derived which are used in the

derivation of the optimal triangular pattern and in the optimal dynamic programming algorithm.

Optimal Triangular Pattern

Let P and p denote the required number of stacks for storing 0 and q pallets respectively, or

9



* f F- [Q/z1

i p - [q/zl, (1)

where [xl indicates the ceiling function (i.e. the smallest integer value larger than x).U
Let x. denote the number of stacks located in lane n. Let N denote the index of the last lane

in which stacks are to be stored. Observe that N is not known in advance. Let r. denote the number of

stacks located in the lanes n + I through N and, thus

r0 - P

'N
rn -Eix j , for n-l..N-1 (2)

rN - 0.

Let Sn(q,rn) be the total space occupied over time by lane n if a total of q pallets are stored in the lanes

n through N and if there are a total of rn stacks, or equivalently rnz pallets, located in the lanes n + 1

5 through N. The depth of lane n is then determined with

xn - p-rn • (3)

The space required over time by lane n is equal to the product of the space it requires multiplied by the

time it occupies that space. Hence

Sn(q,r n ) - [W(xnL+A/2)].[(I+Q-rnz)/d], if xn>O

- 0 otherwise. (4)

The space required over time by the all the items in the batch is then

N
S - Sl(Q,rl) + Sn(rn-lz,rn). (5)$n 2

The optimal dynamic programming procedure assigns the lane depths in a triangular pattern.

(ie. pallets that will remain in the warehouse for a longer period of time are stored in deeper lanes). If

10



3 this pattern is approximated by a continuous triangle, then the slope of the pattern is equal to A/2L-

The lane depth of lane i is then equal to i

Xi - -. (6)
* 2L

Iyields This can be shown by a reformulation of the problem. Substitution of (1) through (4) in (5)

U AQ+)N+L(Q+I) N Az N Lz N(7
2d d i-i 2d i-1 d i-1

U Substitution of

N
M ix - F, (8)

N N-1 N N
E r, -ME ZXj Eixj -P, (9)

and

N N-i N 2 N
Z xir 1 - X E xj - (P2 - X xi )/2 (10)

i-i i-i J-i+1 i-i

i (7 yils W(Q+I)LP WzP(A-P) W(Q+I)A N W Uz N 2 A i
S- + - + - + -(x 1

2  xi). (1
d 2d 2d 2d i-1 L

Taking the partial derivative of (11) with respect to zi gives

dS WLZ

dx1  2d

and setting (12) equal to zero yields (6).

1111J



3 If there is any initial inventory or safety stock, then the dynamic programming procedure and

its continuous approximation acts as if this safety stock is stored first in the triangular pattern and the

I new batch is appended to the safety stock (even though the safety stock is most likely not stored in this

pattern). See Figure 3 for an graphical illustration of this pattern. The shaded area corresponds to the

safety stock, which is not necessarily stored in this pattern.

I ti N-M

N - L2J 7Aj , (13)

where Lx] denotes the Dloor function (i.e. the largest integer smaller than3 x). Let M be the number- of

lanes required as if the initial inventory wa' stored in the triangular pattern. then

M P - 12Y'(IL/Az)] . (1/.)

The number of lanes required for the new batch. when initial inventory is on hand, is then

N - [2.'L(Q+iI)/Az -2'(-IL/Az)] 15

Ile above derivation provides an overall pattern for the lane depths and Ls used in a

continuous approximation heuristic describ~ed in Section 4. But, betause the lane depths can onh%

* 12



3 assume integer values, a dynamic programming algorithm is required to find the discrete optimal lane

depths. The required recursion formula will be derived next.

Q~ia~l Dn m P M ig Algoihm

Let F(ij) denote the mninimum amount of space required over time for storing optimally

pallets into the lanes j through N. Consider first the case of locating q pallets from a batch of 0 pallets

in the lasg two lanes N-I and N. The objective is to find F(qN-l). If all pallets are stored in the last

lane, and thus x,1-O, then

3F(q,N-1) - 0 + F(q,N) - W(pL+A/2).(Q+I)/d. (16)

For the case where there are pallets stored in the last and next to last lane, then

F(q,N-1) - [W((p-xN)L+A/2)].1(+Q-xNz)/d] + [W(xNL+A/2fl.I(I+Q)/d]. (17)

To find the optimalx, the first derivatieof (17) with respect to xNis setequal to zero which

yields*

XN* - p/2 + A/4L. (18)

The second derivative with respect to xN is equal to 2W~z/d, which is positive. Hence, (17) is

a covxfunction of xN. The integer optimal xNq* can then be found by evaluating (17) for rxN*1 and

I'N*J Selecting the integer xN* which generates the smaller objective function value of the two

yields the integer optimum of (17). Taking the smaller value of (16) and (17) for the two cases (with or

without pallets stored in lane N-i) yields the optimal F(qN.1).

Sofrteoptimal lane depths for th attolnshv been derived if q pallets have to be

foun bytryng ver cobintio of'N2 and the optimal lane depths in the last two lanes for rN 2z

In general, the optimal lane depth vector x* can be found with dynamic programming and the M

following backwards recursion formula



3 F(q,n) - min (Sn(q,rn) + F(rnz~n+l)).

x-. .p-N+n (19)

The range of x.is based on the fact that there are N lanes in total and at least one stack must be

assigned to each of the lanes n + I through N, i.e. at least N-n stacks are assigned to the lanes n + 1

through N.

T1he range of the parameters q, n and x.can be further reduced based on the following

property, which states that the optimal vector Xe must contain non-decreasing elements.

For any optimal location policy, the elements of the lane depth vector x must have non-decreasing

values.

Emd Assume an optimal lane depth vecor x with two adjacent lane depths X. and xtsuch

that t -s+ I and %s> N. Let S be the total space required over time for this storage vector and let R be

the total space required over time by interchanging the elements X.and x. Let v be the number of

pallets in all lanes before lane s. Then based on (1) through (5) with C equal to the space contribution

of all other lanes,

S - C + W(X 5L+A/2).(v+xsz+I)/d + W(xtL+A/2)(v+xZ+xz+I )/d (20)

R - C + W(xtL+A/2).(v+xtz+I)/d + WCxL+A/2)-(-%+xtZ+xsZ+I)/d

and

S-R - (x,-xt)AWz/2d > 0. (21)

Hence the lane depth vector x cannot be optimal since interchanging the elements xsand xt decreases

the objective function. By successively repeating this argument the optimal lane depth vector x must

have its elements order by non-decreasing value. Q.E.D.

This property further reduces the allowable range of xnin the recusion formula. lIp stacks

have to beassigned to the lanes nthrough N, with p - rq/z, thenae nn have atmot [p/(N-

14



3+ 1)J stacks. Thi is equal to the number of stacks that all the lanes must have if each lane had the

same depth. Furthermore, assume that for lane n + 1 the largest optimal lane depth is equal to M. + 1

for all possible q. The number of stacks m lane n can never be larger than this value M + 1 Hence,

the new uppr boud of x. becmes

Xn S min am n+ ,  Lp/(N-n+1)J). (22)

The computation of Mn+ I can easily be incorporated in the backwards dynamic programming

recursion. The property also provides the stopping criteria for the dynamic programming recursion. If

Mn+1 is equal to zero, then all the lanes with a smaller index n must also have zero stacks assigned to

them and the dynamic programmin procedure can terminate. After the algorithm has terminated, N

is set equal to the number of non-empty lanes in the optimal solution.

I
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U
4. HEURISTIC LANE DEETS FoR A SINGLE PRODUT,

3 In this section several heuristic procedures for determining the lane depths are compared with

the optimal procedure of the previous section. The objective is to minimize the total space over time a

single batch requires during its stay in the system.

~Desigg of EMriments

All the heuristics are compared with the optimal algorithm by the following full factorial

experimenL The first factor in the experiment is the batch size expressed as the number of stacks in

the atch. This number was set equal to 5, 10, 20, 40, 80 and 160 stacks. The second factor is the ratio

of the aisle width and the pallet length (measured perpendicular to aisle, from pallet centroid to pallet

centroid). This ratio was set equal to 2, 3, 4, 5, 6 and 7. For a pallet length of 4 feet, this corresponds

to aisle widths of 8, 12, 16, 20, 24 and 28 feet. A third factor is the inventory present at the time of

arrival as a percentage of the arrival batch size. This perentage was set equal to 0, 20, 40, 60, 80 and

100%. For each algorithm a total of 216 cases were compared. Eight different algorithms were

compared for a total of 1728 cases. It must be observed that the demand rate, the pallet width along

the aisle and the stack height are invariant factors in the experiment, i.e. they will affect the absolute

values of the objective function but not the relative error of the heuristics or their running times.

All heuristics were programmed in Microsoft Pascal (Version 3.32) on an IBM AT with 80287

numerical coprocessor with all debugging options disabled. Running times are for the computation of

the lane depths onl) and exclude all input/output operations. The resolution of the IBM AT internal

dock is 0.05 seconds. The relative error in percent of the heuristic algorithms in function of the

number of stacks and the A/L ratio are shown in Figures 4 and 5, respectively.

* 16



The first heuristic is the equal lane depth heuristic as presented by Matson and White (1984).

This heuristic is denoted by "Eq" for Equal in Figures 4 and 5. Instead of allowing multiple lane depths

for a single product, this heuristic finds the optimal single lane depth by complete enumeration over the

lane depths. The relative error of the heuristic ranged from 0 % to 9.09 %, with an average relative

error of 0.76 %. The relative error decreased with increasing number of stacks, increasing A/L ratio

and with increasing inventory percentage. The running times ranged from less than 0.05 seconds to 0.11

seconds with an average of 0.03 seconds and can be called negligible.

Continuous EQual Heuristic

The second heuristic is the continuous approximation of the equal lane depth as described in

Matson and White(1984). This heuristic is denoted by "CE" for Continuous Equal in Figures 4 and 5.

The optimal continuous equal lane depth is given by

(Q+2I)A

2 Z

The relative error of the heuristic ranged from 0 % to 34.40 %, with an average relative error of 5.17

%. The relative error decreased as the number of stacks increased, but increased with increasing A IL

ratio and increasing inventory percentage. The continuous equal heuristic performed worse and worse

compared to the discrete equal heuristic for increasing inventory percentage. The running times were

always lower than 0.05 seconds and can be ignored.

The heuristic, which uses the continuous approximation of the optimal triangular pattern, is

denoted as the 'Tr' for Triangle heuristic in Figures 4 and 5. The relative error of the triangle heuristic

ranged from 0 % to 9.23 %, with an average relative error of 0.86 %. The relative error decreases with

increasing number of stacks, but is independent of the A/L ratio and the percentage inventory. Except

17



3 for some exception cases (with small number of stacks), where the relative errors were almost 8 %, the

continuous approximation performed virtually the same as the discrete optimal procedure. The

I~nruning times were always lower than 0.06 seconds and can be ignored.

3 It is usually not practical to have a large variety of lane depths in a warehouse, since the lane

depth in a single aisle is kept constant for layout and material flow purposes. To incorporate this

practical constraint, a modification of the optimal procedure was developed which allowed a limited

number of lane depths. In the experiment two sets of different lane depths were compared. In the first

set the number of different lane depths was set equal to 6 with valuesl , 2, 5, 10, 20 and 40. This

heuristic was denoted by "5P" for 5 Pattern. In the second set the number of lane depths was set equal

to 6with values 1, 2,4,8, 16 and 32. This heuristic was denoted by "2P" for 2 Pattern. Thedynamic

programming procedure can be modified to only examine these lane depths.

5 The relative error of the 5 Pattern heuristic ranged from 0 % to 6.06 % with an average error

equal to 0.05 %. The percentage error decreased with increasing number of stacks and with increasing

percentage inventory, and decreased slightly with increasing A/L ratio. The running times ranged from

less than 0.05 seconds to 4.34 seconds with an average time of 0.65 seconds. This is approximately one

third of the time required for the completely unrestricted procedure. The running times increased with

increasing number of stacks, but decreased with increasing A/L ratio and decreased sharply with

increasing inventory percentage.

The relative error of the 2 Pattern heuristic ranged from 0 % to 20.0 % with an average error

3of 2.01 %. The percentage error decreased with increasing number of stacks, but increased with

increasing A/L ratio and increasing percentage inventory. The running times exhibited the same

behavior as in the 5 Pattern heuristic. They ranged from less than 0.05 seconds to 4.67 seconds with an

average time of 0.68 seconds.
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3 Different number of allowable lane depths were also tested by eliminating one of the allowed

lane depths. There was no large difference in the overall performance as long as there were more than

4 lane depths allowed which formed a (approximately) geometrical seies of sufficient range. If some

batches have a small number of stacks (such as 5 stacks in the experiment), then a lane depth equal to

one must be included in the allowable lane depths in order to achieve low error bounds. Similarly, if

5 the number of stacks is very large then a large lane depth must included to keep the errors low. The

error of the 5 Pattern and 2 Pattern behaved differently in function of the percentage inventory and the

A/L ratio.

In addition, a 3 Pattern consisting of 6 lane depths 1, 3, 6, 12, 24 and 48 was also investigated.

The performance of this pattern was much worse. The relative error ranged from 0 % to 45.29 % with

an average error of 6.23 %. This can be explained by the fact that these lane depths are not integer

divisors of the number of stacks in the batches. Hence, the lane depth pattern should form an

approximately geometric series from I to P/4, where P is the largest common batch size (in stacks),

5 and the individual depths should be integer factors of the most common batch sizes.

1 Lane and 0 Lanes Heuristic

For comparison purposes, the error for the following two extreme storage patterns was also

computed. The first pattern consists of one lane with depth equal to the number of stacks and this

heuristic will be denoted by 1V. for I Lane. The second pattern has a number of lanes equal to the

number of stacks and all the lanes are I deep. This heuristic will be denoted by 0L" for 0 Lanes.

The relative error of the 0 lanes heuristic ranged from 0 % to 283 % with an average error of

122 %. The relative error increased sharply with increasing A/L ratio, increasing number of stacks and

increasing percentage inventory. This confirms the rules of thumb that the lanes get deeper when the

items stay longer in the system (because of large batch size or large initial inventory) or when the lanes

get wider (in order the use the lane space more efficiently). The running times were always less than

0.05 seconds and can be ignored.
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3 The relative error of the 1 Lane heuristic ranged from 0 % to 74.16 %, with an average error

of 17.5 %. lhe relative error increased with increasing number of stacks, but decreased with increasing

A/L ratio and increasing percentage inventory. A large number of stacks will be split up over more

3 than one lane. But again the lanes get deeper if the aisles get wider or if there is more inventory. The

running times were always less than 0.05 seconds and can be ignored.

I From the above experiment it can be concluded that the space utilization objective function for

a single product is relative insensitive to the lane depths. Most of the heuristics generate an excellent

solution quality with very little computational effort. Based purely on the solution quality and the

N required computational effort, all heuristics (except the two extreme patterns) and the optimal

procedure are considered equivalent. This validates the conclusions drawn by Matson and White.

For multiple product situations, the heuristic which finds the optimal lane depths out of a

3 limited set of allowable lane depths is the most practical one. Its quality and efficiency are excellent.

In multiple product warehouses, lot splitting is very important from the warehouse layout point of view.

This was not identified by Matson and White. The discussion from now on will focus on this pattern

heuristic.
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5. LANE DEPTHS FOR MULTIPLE PRODUCTS AND SHARED STORAGE POLICIES

In the above derivation of the lane depths it was assumed that a shared storage policy was

used, i.e. as soon as product vacates a lane, this lane is no longer charged to that product. In other

words, it is assumed that another batch will immediately occupy the vacated lane. This assumption is

unlikely to be satisfied in real life situations.

Three main factors determine how well products can share the space in a warehouse. They

are the number of products, the replenishment and withdrawal patterns of the products and the

replenishment batch sizes and the safety stocks of the products. For more information on shared

storage policies, see Goetschalckx and Ratliff (1984).

Perfectly Balanced Warehouse

Consider the case of a 'perfectly balanced" warehouse. A warehouse is perfectly balanced if

and only if every time a lane of a certain depth is vacated, a batch arrives which requires a lane of that

length for its optimal space utilization. The perfectly balanced condition is not likely to be satisfied in a

real warehouse. For perfectly balanced warehouses, a shared storage policy can be formulated which

minimizes the required warehouse space.

Minimum Warehouse Size Pror'rty

In a perfectly balanced warehouse, the required warehouse space is minimized by computing

the optimal lane depths for each arriving batch and by assigning the batch to the empty lanes of the

required depth.

Eroo. If a warehouse system is perfectly balanced, every batch that arrives can be stored in its

optimal depth pattern, since an empty lane of the required depth will always be available, and no lane

in the warehouse will ever be empty. Since the each batch is stored optimally and since all products
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together do not require any more space than the individual products, a perfectly balanced warehouse

has the optimal space utilization, or equivalently, the required warehouse size is minimized.

Kooy (1981) expressed similar ideas in a qualitative way. The above definition of perfectly

balanced can be relaxed based upon a limited number of allowable lane depths, i.e. substitute the

pattern heuristic for the optimal procedure to determine the lane depths for every arriving product.

This will be denoted as a *pattern perfectly balanced" warehouse. A pattern perfectly balanced

warehouse requires a smaller number of different lane depths and this will make the pattern perfectly

balanced condition more likely to be satisfied in real life. Hence if a warehouse is pattern perfectly

balanced, then the pattern storage policy will yield an minimum space configuration, i.e. the pattern

storage policy is optimal.

If a warehouse is not completely pattern perfectly balanced and if a product arrives and its

lane depths are computed using the pattern heuristic and there is no empty lane of that particular

length, then a storage lane of the next longer or shorter length can be used. Because of the relative

insensitivity of the objective function, the use of this heuristic will not significantly decrease the solution

quality.

Observe that the above policy will operate the warehouse very efficiently with respect to

S-" required space, but that the warehouse might be very inefficient with respect to material handling cost.

The main disadvantage of the above warehouse configuration is that the number of lanes of a

certain depth might no( be a multiple of the number of lanes that fit in an aisle. The following section

will develop a simple rounding procedure to achieve this and hence will yield a "practical* warehouse

layout.
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6. WAREHOUSE LAYOUT DESIGN AND OPERATING POLICES

For a warehouse system in steady state operation, the following set of procedures can be

specified, which will make this warehouse operate in near-optimal mode with respect to space

utilization. It is assumed that the warehouse is nearly perfectly balanced with respect to the pattern

heuristic. This assumption seems reasonable if the warehouse system has many, uncorrelated products

5and the aggregate inventory is relatively constant.

The procedure consists of three steps. In step one, the required aggregate number of lanes for

each lane depth based on a certain depth pattern is computed. In step two, the number of lanes of

each depth is rounded to multiples of the number of lanes in an aisle. This determines the number of

aisles of each lane depth. The first two steps determine the warehouse design. In the third step, the

warehouse storage policy is then specified. The three steps can then be repeated to evaluate different

depth patterns.

Warehouse Layout Procedure

q 1) For all products currently in the warehouse, compute the optimal number of lanes based on

a particular lane depth pattern. Sum the required number of lanes by depth for all products. Repeat

this computation at regular time intervals and average out the required number of lanes for each depth.

2) Sort these required number of lanes by increasing depth. In order for no lanes of a

different depth to be mixed on one side of an aisle, adjust the cumulative number of lanes for each

depth by rounding down or up to the nearest multiple of lanes in an aisle.

For example, assume 20 lanes fit along one side of the aisle and the number lanes for the

current depth, equal to 8 stacks, is 24 and the the required number of lanes for the next depth, equal to

16, is 14. The number of lanes of the current depth will be rounded down from 24 to 20 and 4 lanes

will be carried over to the next depth. 4 lanes of depth 8 hold 32 stacks, this is equivalent to 2 lanes of
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depth 16. Hence, the required number of lanes of depth 16 is now 16. This number will be rounded up

to 20 and -4 lanes carried to the next depth. The result is one side of the aisle has 20 8-deep lanes and

the other side has 20 16-deep lanes.

3) Store the products based on their pattern lane depth in the aisles. If no lane of the exact

depth is free, pick in an alternating way the next longer or shorter lane to store the product. The actual

storage location can be selected from the available empty lanes of the desired length based on handling

characteristics such as length of stay of the lane. In other words, lanes that are vacated quicker can be

located closer to the Input/Output point.

Observe that the space utilization is only affected by the length of the lane in which the

product is stored, not by where this lane is located in the warehouse. Incorporating the material

handling costs in the lane selection seems to be a fertile area of further research.
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7. CONCLUSIONS

For the single product case, both for the single lane depth and the multiple lane depths cases,

efficient algorithms exist to derive the optimal, discrete lane depths. These algorithms are so fast that

they can be implemented on microcomputers in real time. For both cases the continuous

approximation formulas are sufficiently accurate and even faster to implement.

For most practical situations only a limited number of lane depths are available because of the

warehouse layout. The pattern algorithm selects the optimal lane depths from the available lane

depths. This algorithm is very efficient and generates solutions which are very close to the unrestricted

optimum. This is the only practical algorithm if multiple products have to be stored in the warehouse.

Based on the pattern algorithm and the principle of a perfectly balanced warehouse a set of

layout and operating procedures has been derived which will operate the warehouse near maximum

space utilization.

The extensive simulation of the proposed policies and the adaptation of the policies to the case

where both storage and handling considerations are important are topics for further research.
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